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Abstract 

Recursive damping algorithms allow for a simple and fast closed orbit subtrac- 
tion with a long and also adjustable integration time. A long integration time is 
necessary for operating a transverse damper with a betatron tune value near an 
integer. A simple implementation as a digital filter is discussed. 



1. Introduction 

The Booster and AGS transverse damper use one pick-up electrode (PUE) to measure 
the bunch position and a strip line to apply a correcting kick to the same bunch on 
the following turn. The magnitude of the kick has to be determined such that the 
coherent dipole motion of the bunch is reduced. In this technical note, I am extending 
the formalism described in Tech. Note 377[?] to include the situation when the PUE is 
not at the same position as the strip line kicker and, more importantly, also extend the 
digital filter design to include recursive filters. A recursive filter design allows for the 
implementation of a efficient and flexible closed orbit correction scheme. 

2. Damping Algorithm 

The amount of coherent dipole motion of the bunch is expressed in terms of the Courant- 
Snyder invariant: 

E = 7r (yxi + 2 a x 4  + px:) (2.1) 

where xk and xi are the position and angle of the bunch at the time when the kick is 
applied. The change of E for a kick 0 is then 

Zk and xi can be obtained from the PUE information typically obtained from the 

previous turn. Using just the information at the PUE ( Tg ) , of which of course only 
. - ,  

xp can be measured, gives: 

Inserting into eq. 2.2 then gives: 
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With ( z! ) expressed in terms of E and phase $, 

x, = @cos$ 
x~ = fi (-a, cos II, - sin +) 

the change of E becomes: 

AE = - 2 O ~ ( s i n c p c o s $ +  coscpsin$) = - 2 O m s i n ( c p  + $) (2.6) 
If the kick in the strip line is made simply proportional to the reading of the PUE or 
O = kx, = kc -E cos $ the effective change of the emittance, obtained by averaging 
over the phase variable $, is 

(A€) = 1 2T AEd+ = -kcm sin cp. 
2n I (2.7) 

cp is the phase advance between the PUE location and the strip line location. If both 
are located at the same place cp = 27ru. Clearly maximum damping is then achieved 
for a fractional betatron tune of n / 4 .  In this case the damping time constant is If 
the PUE in the AGS is located downstream of the kicker (F20) in straight section G5 
cp = 2nu - 6, with S M 60°. The optimal tune value is then 8.92 which is much closer to 
the standard operating point of the AGS at injection. 

3. Recursive Digital Filter 

A digital filter can be used to process the information from the PUE before it is used 
to  control the size of the kick applied with the strip lines. Using digital pipeline delays 
the information of several subsequent turns can be included in the processing. Whereas 
a non-recursive filter only allows the inclusion of a limited number of turn information, 
a recursive filter by feeding back the output of the filter to the input automatically 
includes the information of a very large number of turns. A recursive part of the filter 
is therefore best suited for closed orbit subtraction where the average position of many 
turns needs to be determined. 

In the following the response of a simple recursive filter is calculated. The output is 
added to the input after being delayed by one turn and multiplied by a constant K :  

( y ) =(1-.)[( :;) + K X  ( : r  ) -1 + K 2 X  ( 3 )  -2 +-..I 
= ( 1 - ' " ) [ ( l + n T - ~ + ( i T - ~ ) 2 + . . . )  (:)I + ( 2 )  

= (1 - K )  (1 - K T - y  ( 2 ) + ( 2 ) 
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where T is the one-turn matrix at the location of the PUE: 

cos ( 2 ~ )  + ap sin (2nv) 
- + sin (2nv) 

p p  sin (2nv) 
cos (2nv) - ap sin (2nv) T =  ( 1 + ~ 2  

The factor (1 - K )  guarantees that the time independent part of x,,t is equal to the 
closed orbit ?fp.  The response is then 

( x o u t ) = (  4 U t  ? ) + i + w x  
1 - K (cos (2nv) + ap sin (2nv)) -K& sin ( 2 ~ )  - 

1 - 6 (cos (2nv) - ap sin (2nv)) ) ( ) l+d 
K% sin ( 2 ~ )  

(3.3) 
For K = 0 the filter has no effect. For K + 1, xOut becomes equal to the closed orbit, 
averaging over an infinite number of turns. For intermediate values of K the determina- 
tion of the closed orbit is obtained from a limited number of turns. In fact, by adjusting 
K the response time of the damper to changes in the closed orbit can be adjusted. For 
example, injection error damping benefits from a fast response time whereas damping 
of transverse instabilities benefits from a much slower response time which then allows 
for a tune value much closer to an integer, as is outline later. A implementation for a 
simple adjustment of K is described later. Also, the filter determines the closed orbit 
for each bunch separately due to the pipe lined structure of the delay. 

To obtain a value for the strip line kick that does not depend on the closed orbit 
the output of the recursive filter has to be subtracted from the direct PUE signal: 

(9 = k (.p - G u t )  

= k (5 - *z ((1 - K (cos ( 2 7 4  + ap sin (2nv))) Z p  - K& sin (2nv) 5;)) 

= /q@ (cos 1 ~ ,  - (cos II, + K (sin (2nv) sin II, - cos (2nv) cos $1)) 
(3.4) 

Inserting into Eq. 2.6 and averaging over the phase II, then gives: 

(A€) = 
- k E a ( s i n c p -  *-(sincp(l - ~cos(2nv))  +coscp~sin(2nv))) 

(3.5) 
Fig. 1 shows the block diagram for this filter algorithm. Fig.2 shows the same filter 
where the multiplications have been implemented with simple n-bit shift registers and 
an additional adder[?]. K is related to n by the formula 

2n - 1 
2n 

yi = -* 

4 



J 

0 

Not all values for K can be realized with this implementation. But the value of K is not 
very critical as it only determines the integration range for the closed orbit subtraction. 
Fig. 3 and 4 show the responses of the filter as a function of tune for cp = 27ru - 6, with 
6 M 60' and cp = 27ru, respectively, for n = 1 , 2 , 3 , 4 , 5  or K = $, 2, i, g7 $j. 

4. Notch Filter with Recursive Path 

By adding an additional one-turn delay in the recursive path of the filter, the filter 
effectively becomes a notch filter for K = 0 but changes only little for large values of K .  

However, the filter can be implemented with much fewer components as will be shown 
later. The block diagram is shown in Fig. 5 and the implementation is shown in Fig. 
6. The result of the upper recursive path in Fig. 5 is 

( 5out x:ut ) = ( 7 ) + \ ( 1  - K )  ( 1  - 6 T - y  T-' (5) 
= ( ~ ) + i & & 7 x  . - ,  

(cos (27ru) - ap sin (27ru)) - K - P p  sin (27ru) 

Subtracting zOut from the reading of the PUE again allows to perform the closed orbit 
subtraction: 

8 = k: (.p - Zout)  
(1-n) (((cos (27ru) - ap sin (27ru)) - 6) zP - p p  sin (27ru) 2;)) 

(l-1 (sin (27ru) sin 1 ~ ,  + cos (27ru) cos II, - cos $1) 

(A€) = 

(4-2) 
Inserting into Eq. 4.1 and averaging over the phase 1C, then gives: 

- k e r n  (sin cp - (4 -3 )  
1 - 2 n J ~ s ~ ~ , ! , ) + K 2  (sin cp (cos (27ru) - tc) - cos 43 sin (27rv))) 

Fig. 7 and 8 show the responses of this filter as a function of tune for cp = 27ru - 6, with 
6 M 60° and cp = 2nu, respectively, for n = 0 , 1 , 2 , 3 , 4 ,  or K = 0, i, a, g, g. 

\ 

5. Conclusion 

The digital notch filter with a recursive path for closed orbit subtraction offeis an 
efficient and flexible way to  obtain fast damping at a high tune value close to  an integer 
value and still have reliable subtraction of the closed orbit information. As Fig. 8 shows 
full damping efficiency can be achieved at betatron tune of 8.9 with n = 4. 
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6. Figure Captions 

Fig. 1 Block diagram of the digital filter with recursive path for closed orbit subtrac- 
tion. 

Fig. 2 Block diagram of filter from Fig. 1 implemented with n-bit shift register. 

Fig. 3 Response function for digital filter from Fig. 1 for n = 1,2,3,4,5 and cp = 2nv. 

Fig. 4 Response function for digital filter from Fig. 1 for n = 1,2,3,4,5 and cp = 
2nu - 6, with 6 x 60°. 

Fig. 5 Block diagram of digital notch filter with recursive path for closed orbit sub- 
traction. 

Fig. 6 Block diagram of filter from Fig. 5 implemented with n-bit shift register. 

Fig. 7 Response function for digital notch filter from Fig. 5 for n = 0,1,2,3,4 and 
cp = 2nv. 

Fig. 8 Response function for digital notch filter from Fig. 5 for n = 0,1,2,3,4 and 
cp = 2nu, with 6 x 60". 
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Fig. 1. Block diagram of digital filter with recursive path for closed orbit subtraction. 
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Fig. 2. Block diagram of filter from Fig. 1 implemented with n-bit shift registers. 
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Fig. 5. Block diagram of digital notch filter with recursive path for closed orbit subtraction. 
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Fig. 6. Block diagram of filter of Fig. 5 implemented with n-bit shift register. 
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